金剛石又名鉆石,除了其絢麗的色彩受到人們的珍視 到 1982年,日本科學(xué)家 Matsumoto和 Sato等使用熱絲化學(xué)
外,其所具有*的、的優(yōu)異物理和化學(xué)性能(如 氣相沉積(HFCVD)法在0.001~0.010MPa的低壓下用CH4
機(jī)械特性、熱學(xué)特性、光學(xué)特性、縱波聲速、半導(dǎo)體特性及 和 H2 的混合氣體成功地合成了金剛石薄膜,并且利用
化學(xué)惰性等)也備受人們的關(guān)注。這些性質(zhì)在自然界所有的 CVD 技術(shù)合成的金剛石薄膜物理性質(zhì)和天然金剛石基本相
材料中均是的,比如:金剛石的硬度是自然界中zui 同或相近,它們的化學(xué)性質(zhì)則*相同,這使得金剛石的應(yīng)
高的;熱傳導(dǎo)率也為已知材料中zui高的(室溫下為硅的 15 用領(lǐng)域進(jìn)一步擴(kuò)大。這一技術(shù)的成功讓人們?cè)俅慰吹綇V泛應(yīng)
倍、銅的5倍);高絕緣性和從紅外到紫外的極寬透光性等。 用金剛石的曙光,從而掀起了一個(gè)研究金剛石薄膜的熱潮。
但是由于天然金剛石在自然界中的含量極少,而且價(jià)格昂
1 金剛石薄膜制備方法及其原理
貴,不可能把大量的金剛石用于工業(yè)用途上,因而人們的研
究興趣很快轉(zhuǎn)移到人工合成金剛石上來(lái)。早在 18 世紀(jì)末人 金剛石的合成方法從50年代的高溫高壓(HTHP)到80
們就通過(guò)使金剛石燃燒的辦法知道了金剛石是由碳組成,即 年代初日本科學(xué)家使用的CVD,再到今天的多種合成方
金剛石是石墨的同素異形體,因此人們就開(kāi)始試圖通過(guò)石墨 法,在這將近半個(gè)世紀(jì)的時(shí)間里金剛石薄膜的制備工藝有了
來(lái)合成金剛石。 長(zhǎng)足的發(fā)展。目前較成熟且有發(fā)展前途的方法有:熱絲CVD
隨后,美國(guó)和俄羅斯科學(xué)家在近代熱力學(xué)的指導(dǎo)下制造 法(HFCVD)、燃燒火焰沉積法(Flame deposition)、直流電
金剛石。在1955年,Berman和Simon發(fā)表了金剛石和石墨 弧等離子噴射 CVD法(DAPCVD)、微波等離子體 CVD 法
處于平衡態(tài)時(shí)的高溫和高壓線,指出在金剛石和石墨的平衡 (WMPCVD)、激光輔助 CVD 法(LACVD)。下面介紹常
線上方金剛石是穩(wěn)定的,在平衡線下方石墨是穩(wěn)定的;金剛 見(jiàn)的幾種制備方法及其制備原理:
[1,2]
石和石墨的表面自由能之差為 2090J/mol,暗示了在高溫高 (1)熱絲 CVD 法(HFCVD) 。此方法是熱分解法
壓平衡線附近,在催化劑的作用下,過(guò)飽和的碳可能凝結(jié)為 合成金剛石薄膜的發(fā)展,zui早是在 1982 年由日本科學(xué)家
亞穩(wěn)態(tài)的金剛石。同年,美國(guó)的General Electric公司成功地 Matsumoto和Sato等提出的。該方法雖提出較早,但目前使
合成了金剛石。他們把碳溶解在金屬(過(guò)渡金屬,如鎳、鐵、 用仍非常普遍,并且已經(jīng)發(fā)展成沉積金剛石薄膜較為成熟的
錳等)催化劑的溶液里,在 2000℃、5.5GPa 條件下,通過(guò) 方法之一。這種方法的基本原理是靠在襯底上方設(shè)置金屬熱
使過(guò)飽和碳結(jié)晶而形成金剛石。但是由于高溫高壓合成的金 絲(如鎢、鉭絲等)高溫(2000~2200℃)加熱分解含碳的
剛石呈粉末狀,生成顆粒較小且成本高,使得人工合成金剛 氣體,形成活性粒子在原子氫的作用下在襯底(保持在700~
石在實(shí)際中的應(yīng)用受到很大的限制。 1000℃)上沉積而形成金剛石。此方法簡(jiǎn)單易行,缺點(diǎn)就是
20 世紀(jì) 60 年代,人們認(rèn)識(shí)到在碳?xì)浠衔餆峤膺^(guò)程產(chǎn) 沉積速率較慢(V<10?m/h,不均勻,工藝穩(wěn)定性差,易污
生的原子氫能夠促進(jìn)金剛石的形成,70年代中期,蘇聯(lián)科學(xué) 染。zui近還提出兩種改良的HFCVD模型:反應(yīng)氣體分送的
[3]
家觀察到原子氫能促進(jìn)金剛石的形成和阻止石墨的共生。直 HFCVD 法 (碳源氣體和氫氣由熱絲的下方和上方分別送