国产精品2020,久久狠狠爱亚洲综合影院,久久精品国产亚洲av麻豆图片,深夜精品福利亚洲

歡迎來(lái)到吉林省華博科技工業(yè)有限公司網(wǎng)站!
咨詢(xún)熱線

13009129951

當(dāng)前位置:首頁(yè)  >  技術(shù)文章  >  電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

更新時(shí)間:2009-03-19  |  點(diǎn)擊率:7601

Designation: D 149 – 97a (Reapproved 2004)
Standard Test Method for
Dielectric Breakdown Voltage and Dielectric Strength of
Solid Electrical Insulating Materials at Commercial Power
1
Frequencies
This standard is issued under the fixed designation D 149; the number immediay following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope over). With the addition of instructions modifying Section 12,
this test method may be used for proof testing.
1.1 This test method covers procedures for the determina-
1.8 ThistestmethodissimilartoIECPublication243-1.All
tion of dielectric strength of solid insulating materials at
2,3 procedures in this method are included in IEC 243-1. Differ-
commercial power frequencies, under specified conditions.
ences between this methodand IEC 243-1 are largely editorial.
1.2 Unless otherwise specified, the tests shall be made at 60
1.9 This standard does not purport to address all of the
Hz. However, this test method may be used at any frequency
safety concerns, if any, associated with its use. It is the
from 25 to 800 Hz. At frequencies above 800 Hz, dielectric
responsibility of the user of this standard to establish appro-
heating may be a problem.
priate safety and health practices and determine the applica-
1.3 This test method is intended to be used in conjunction
bility of regulatory limitations prior to use. Specific hazard
with anyASTM standard or other document that refers to this
statements are given in Section 7. Also see 6.4.1.
test method. References to this document should specify the
particular options to be used (see 5.5).
2. Referenced Documents
1.4 It may be used at various temperatures, and in any
4
2.1 ASTM Standards:
suitable gaseous or liquid surrounding medium.
D 374 Test Methods for Thickness of Solid Electrical Insu-
1.5 This test method is not intended for measuring the
lation
dielectric strength of materials that are fluid under the condi-
D 618 Practice for Conditioning Plastics for Testing
tions of test.
D 877 Test Method for Dielectric Breakdown Voltage of
1.6 This test method is not intended for use in determining
Insulating Liquids Using Disk Electrodes
intrinsic dielectric strength, direct-voltage dielectric strength,
D 1711 Terminology Relating to Electrical Insulation
or thermal failure under electrical stress (see Test Method
D 2413 Practice for Preparation of Insulating Paper and
D3151).
Board Impregnated with a Liquid Dielectric
1.7 This test method is most commonly used to determine
D 3151 Test Method forThermal Failure of Solid Electrical
thedielectricbreakdownvoltagethroughthethicknessofatest
Insulating Materials Under Electric Stress
specimen (puncture). It may also be used to determine dielec-
D 3487 Specification for Mineral Insulating Oil Used in
tric breakdown voltage along the interface between a solid
Electrical Apparatus
specimen and a gaseous or liquid surrounding medium (flash-
D 5423 Specification for Forced-Convection Laboratory
Ovens for Electrical Insulation
1
This test method is under the jurisdiction of ASTM Committee D09 on 2.2 IEC Standard:
Electrical and Electronic Insulating Materials and is the direct responsibility of
Pub. 243-1 Methods of Test for Electrical Strength of Solid
Subcommittee D09.12 on Electrical Tests. 5
Insulating Materials—Part 1: Tests at Power Frequencies
Current edition approved March 1, 2004. Published March 2004. Originally
approved in 1922. Last previous edition approved in 1997 as D 149–97a.
2
Bartnikas, R., Chapter 3, “High Voltage Measurements,” Electrical Properties
4
of Solid Insulating Materials, Measurement Techniques, Vol. IIB, Engineering For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Dielectrics, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987. contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
3
Nelson, J. K., Chapter 5, “Dielectric Breakdown of Solids,” Electrical Standards volume information, refer to the standard’s Document Summary page on
Properties of Solid Insulating Materials: Molecular Structure and Electrical the ASTM website.
5
Behavior, Vol. IIA, Engineering Dielectrics, R. Bartnikas and R. M. Eichorn, Available from the International Electrotechnical Commission, Geneva, Swit-
Editors, ASTM STP 783, ASTM, Philadelphia, 1983. zerland.
Copyright (C) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

D 149 – 97a (2004)
2.3 ANSI Standard: environmentalsituations.Thistestmethodisusefulforprocess
C68.1 Techniques for Dielectric Tests, IEEE Standard No. control, acceptance or research testing.
6
4 5.3 Resultsobtainedbythistestmethodcanseldombeused
directly to determine the dielectric behavior of a material in an
3. Terminology actual application. In most cases it is necessary that these
results be evaluated by comparison with results obtained from
3.1 Definitions:
other functional tests or from tests on other materials, or both,
3.1.1 dielectric breakdown voltage (electric breakdown
in order to estimate their significance for a particular material.
voltage), n—the potential difference at which dielectric failure
5.4 Three methods for voltage application are specified in
occurs under prescribed conditions in an electrical insulating
Section 12: Method A, Short-Time Test; Method B, Step-by-
material located between two electrodes. (See also Appendix
StepTest; and Method C, Slow Rate-of-RiseTest. MethodAis
X1.)
the most commonly-used test for quality-control tests. How-
3.1.1.1 Discussion—The term dielectric breakdown voltage
ever, the longer-time tests, Methods B and C, which usually
is sometimes shortened to “breakdown voltage.”
will give lower test results, may give more meaningful results
3.1.2 dielectric failure (under test), n—an event that is
whendifferentmaterialsarebeingcomparedwitheachother.If
evidencedbyanincreaseinconductanceinthedielectricunder
a test set with motor-driven voltage control is available, the
test limiting the electric field that can be sustained.
slow rate-of-rise test is simpler and preferable to the step-by-
3.1.3 dielectric strength, n—the voltage gradient at which
step test. The results obtained from Methods B and C are
dielectric failure of the insulating material occurs under spe-
comparable to each other.
cific conditions of test.
5.5 Documents specifying the use of this test method shall
3.1.4 electric strength, n—see dielectric strength.
also specify:
3.1.4.1 Discussion—Internationally, “electric strength” is
5.5.1 Method of voltage application,
used almost universally.
5.5.2 Voltage rate-of-rise, if slow rate-of-rise method is
3.1.5 flashover, n—a disruptive electrical discharge at the
specified,
surface of electrical insulation or in the surrounding medium,
5.5.3 Specimen selection, preparation, and conditioning,
which may or may not cause permanent damage to the
5.5.4 Surrounding medium and temperature during test,
insulation.
5.5.5 Electrodes,
3.1.6 For definitions of other terms relating to solid insulat-
5.5.6 Wherever possible, the failure criterion of the current-
ing materials, refer to Terminology D 1711.
sensing element, and
4. Summary of Test Method 5.5.7 Any desired deviations from the recommended proce-
dures as given.
4.1 Alternating voltage at a commercial power frequency
5.6 If any of the requirements listed in 5.5 are missing from
(60 Hz, unless otherwise specified) is applied to a test
the specifying document, then the recommendations for the
specimen. The voltage is increased from zero or from a level
several variables shall be followed.
well below the breakdown voltage, in one of three prescribed
5.7 Unless the items listed in 5.5 are specified, tests made
methods of voltage application, until dielectric failure of the
with such inadequate reference to this test method are not in
test specimen occurs.
conformancewiththistestmethod.Iftheitemslistedin5.re
4.2 Mostcommonly,thetestvoltageisappliedusingsimple
not closely controlled during the test, the precisions stated in
test electrodes on opposite faces of specimens. The specimens
15.2 and 15.3 may not be realized.
may be molded or cast, or cut from flat sheet or plate. Other
5.8 Variations in the failure criteria (current setting and
electrode and specimen configurations may be used to accom-
response time) of the current sensing element significantly
modate the geometry of the sample material, or to simulate a
affect the test results.
specific application for which the material is being evaluated.
5.9 Appendix X1. contains a more complete discussion of
the significance of dielectric strength tests.
5. Significance and Use
5.1 The dielectric strength of an electrical insulating mate- 6. Apparatus
rial is a property of interest for any application where an
6.1 Voltage Source—Obtain the test voltage from a step-up
electrical field will be present. In many cases the dielectric
transformer supplied from a variable sinusoidal low-voltage
strength of a material will be the determining factor in the
source. The transformer, its voltage source, and the associated
design of the apparatus in which it is to be used.
controls shall have the following capabilities:
5.2 Tests made as specified herein may be used to provide
6.1.1 The ratio of crest to root-mean-square (rms) test
part of the information needed for determining suitability of a
voltage shall be equal to =2 6 5% (1.34 to 1.48), with the
materialforagivenapplication;andalso,fordetectingchanges
test specimen in the circuit, at all voltages greater than 50 % of
or deviations from normal characteristics resulting from pro-
the breakdown voltage.
cessing variables, aging conditions, or other manufacturing or
6.1.2 The capacity of the source shall be sufficient to
maintainthetestvoltageuntildielectricbreakdownoccurs.For
most materials, using electrodes similar to those shown in
6 Table 1, an output current capacity of 40 mA is usually
Available fromAmerican National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036. satisfactory. For more complex electrode structures, or for

D 149 – 97a (2004)
A
TABLE 1 Typical Electrodes for Dielectric Strength Testing of Various Types of Insulating Materials
Electrode
B,C
Description of Electrodes Insulating Materials
Type
1 Opposing cylinders 51 mm (2 in.) in diameter, 25 mm (1 in.) thick with flat sheets of paper, films, fabrics, rubber, molded plastics, laminates,
edges rounded to 6.4 mm (0.25 in.) radius boards, glass, mica, and ceramic
2 Opposing cylinders 25 mm (1 in.) in diameter, 25 mm (1 in.) thick with same as for Type 1, particularly for glass, mica, plastic, and ceramic
edges rounded to 3.2 mm (0.125 in.) radius
3 Opposing cylindrical rods 6.4 mm (0.25 in.) in diameter with edges same as for Type 1, particularly for varnish, plastic, and other thin film and
D
rounded to 0.8 mm (0.0313 in.) radius tapes: where small specimens necessitate the use of smaller electrodes,
or where testing of a small area is desired
4 Flat plates 6.4 mm (0.25 in.) wide and 108 mm (4.25 in.) long with edges same as for Type 1, particularly for rubber tapes and other narrow widths
square and ends rounded to 3.2 mm (0.125 in.) radius of thin materials
E
5 Hemispherical electrodes 12.7 mm (0.5 in.) in diameter filling and treating compounds, gels and semisolid compounds and greases,
embedding, potting, and encapsulating materials
6 Opposing cylinders; the lower one 75 mm (3 in.) in diameter, 15 mm same as for Types 1 and 2
(0.60 in.) thick; the upper one 25 mm (1 in.) in diameter, 25 mm
F
thick; with edges of both rounded to 3 mm (0.12 in.) radius
G
7 Opposing circular flat plates, 150 mm diameter , 10 mm thick with flat sheet, plate, or board materials, for tests with the voltage gradient
H
edges rounded to 3 to 5 mm radius parallel to the surface
A
TheseelectrodesarethosemostcommonlyspecifiedorreferencedinASTMstandards.WiththeexceptionofType5electrodes,noattempthasbeenmadetosuggest
electrode systems for other than flat surface material. Other electrodes may be used as specified in ASTM standards or as agreed upon between seller and purchaser
where none of these electrodes in the table is suitable for proper evaluation of the material being tested.
B
Electrodes are normally made from either brass or stainless steel. Reference should be made to the standard governing the material to be tested to determine which,
if either, material is preferable.
C
The electrodes surfaces should be polished and free from irregularities resulting from previous testing.
D
Refer to the appropriate standard for the load force applied by the upper electrode assembly. Unless otherwise specified the upper electrodes shall be 50 6 2g.
E
Refer to the appropriate standard for the proper gap settings.
F
The Type 6 electrodes are those given in IEC Publication 243-1 for testing of flat sheet materials. They are less critical as to concentricity of the electrodes than are
the Types 1 and 2 electrodes.
G
Other diameters may be used, provided that all parts of the test specimen are at least 15 mm inside the edges of the electrodes.
H G
The Type 7 electrodes, as described in the table and in Note , are those given in IEC Publication 243-1 for making tests parallel to the surface.
testing high-loss materials, higher current capacity may be one current setting. The electrode area may have a significant
needed.Thepowerratingformosttestswillvaryfrom0.5kVA effect upon what the current setting should be.
for testing low-capacitance specimens at voltages up to 10 kV, 6.1.7 The specimen current-sensing element may be in the
to 5 kVA for voltages up to 100 kV. primary of the step-up transformer. Calibrate the current-
6.1.3 The controls on the variable low-voltage source shall sensing dial in terms of specimen current.
be capable of varying the supply voltage and the resultant test 6.1.8 Exercise care in setting the response of the current
voltage smoothly, uniformly, and without overshoots or tran- control. If the control is set too high, the circuit will not
sients, in accordance with 12.2. Do not allow the peak voltage respondwhenbreakdownoccurs;ifsettoolow,itmayrespond
to exceed 1.48 times the indicated rms test voltage under any to leakage currents, capacitive currents, or partial discharge
circumstance. Motor-driven controls are preferable for making (corona)currentsor,whenthesensingelementislocatedinthe
short-time (see 12.2.1) or slow-rate-of-rise (see 12.2.3) tests. primary, to the step-up transformer magnetizing current.
6.1.4 Equip the voltage source with a circuit-breaking 6.2 Voltage Measurement—A voltmeter must be provided
device that will operate within three cycles. The device shall for measuring the rms test voltage. A peak-reading voltmeter
disconnect the voltage-source equipment from the power may be used, in which case divide the reading by =2toget
service and protect it from overload as a result of specimen rms values. The overall error of the voltage-measuring circuit
breakdown causing an overload of the testing apparatus. If shall not exceed 5 % of the measured value. In addition, the
prolonged current follows breakdown it will result in unnec- response time of the voltmeter shall be such that its time lag
essary burning of the test specimens, pitting of the electrodes, will not be greater than 1% of full scale at any rate-of-rise
and contamination of any liquid surrounding medium. used.
6.1.5 The circuit-breaking device should have an adjustable 6.2.1 Measure the voltage using a voltmeter or potential
current-sensing element in the step-up transformer secondary, transformer connected to the specimen electrodes, or to a
to allow for adjustment consistent with the specimen charac- separate voltmeter winding, on the test transformer, that is
teristics and arranged to sense specimen current. Set the unaffected by the step-up transformer loading.
sensing element to respond to a current that is indicative of 6.2.2 It is desirable for the reading of the maximum applied
specimen breakdown as defined in 12.3. test voltage to be retained on the voltmeter after breakdown so
6.1.6 The current setting can have a significant effect on the that the breakdown voltage can be accuray read and re-
test results. Make the setting high enough that transients, such corded.
as partial discharges, will not trip the breaker but not so high 6.3 Electrodes—For a given specimen configuration, the
thatexcessiveburningofthespecimen,withresultanectrode dielectric breakdown voltage may vary considerably, depend-
damage, will occur on breakdown. The optimum current inguponthegeometryandplacementofthetesectrodes.For
setting is not the same for all specimens and depending upon this reason it is important that the electrodes to be used be
the intended use of the material and the purpose of the test, it described when specifying this test method, and that they be
may be desirable to make tests on a given sample at more than described in the report.

D 149 – 97a (2004)
6.3.1 One of the electrodes listed in Table 1 should be the test values. Testing in air may require excessively large
specified by the document referring to this test method. If no specimens or cause heavy surface discharges and burning
electrodes have been specified, select an applicable one from before breakdown. Some electrode systems for testing in air
Table 1, or use other electrodes mutually acceptable to the make use of pressure gaskets around the electrodes to prevent
parties concerned when the standard electrodes cannot be used flashover. The material of the gaskets or seals around the
due to the nature or configuration of the material being tested. electrodes may influence the breakdown values.
See references in Appendix X2 for examples of some special 6.4.1 When tests are made in insulating oil, an oil bath of
electrodes.Inanyeventtheelectrodesmustbedescribedinthe adequate size shall be provided. (Caution—The use of glass
report. containers is not recommended for tests at voltages above
6.3.2 The electrodes of Types 1 through 4 and Type 6 of about10kV,becausetheenergyreleasedatbreakdownmaybe
Table 1 should be in contact with the test specimen over the sufficient to shatter the container. Metal baths must be
entire flat area of the electrodes. grounded.)
6.3.3 The specimens tested using Type 7 electrodes should It is recommended that mineral oil meeting the requirements
be of such size that all portions of the specimen will be within of Specification D 3487, Type I or II, be used. It should have a
andnolessthan15mmfromtheedgesoftheelectrodesduring dielectric breakdown voltage as determined by Test Method
test. In most cases, tests usingType 7 electrodes are made with D 877 of at least 26 kV. Other dielectric fluids may be used as
the plane of the electrode surfaces in a vertical position. Tests surrounding mediums if specified. These include, but are not
made with horizontal electrodes should not be directly com- limited to, silicone fluids and other liquids intended for use in
pared with tests made with vertical electrodes, particularly transformers, circuit breakers, capacitors, or cables.
when the tests are made in a liquid surrounding medium.
6.4.1.1 The quality of the insulating oil may have an
6.3.4 Keep the electrode surfaces clean and smooth, and appreciable effect upon the test results. In addition to the
freefromprojectingirregularitiesresultingfromprevioustests. dielectric breakdown voltage, mentioned above, particulate
If asperities have developed, they must be removed. contaminants are especially important when very thin speci-
6.3.5 It is important that the original manufacture and mens (25 μm (1 mil) or less) are being tested. Depending upon
subsequent resurfacing of electrodes be done in such a manner the nature of the oil and the properties of the material being
that the specified shape and finish of the electrodes and their tested, other properties, including dissolved gas content, water
edges are maintained. The flatness and surface finish of the content, and dissipation factor of the oil may also have an
electrode faces must be such that the faces are in close contact effect upon the results. Frequent replacement of the oil, or the
with the test specimen over the entire area of the electrodes. use of filters and other reconditioning equipment may be
Surface finish is particularly important when testing very thin necessary to minimize the effect of variations of the quality of
materials which are subject to physical damage from improp- the oil on the test results.
erly finished electrodes. When resurfacing, do not change the 6.4.1.2 Breakdown values obtained using liquids having
transition between the electrode face and any specified edge different electrical properties may not be comparable. (See
radius. X1.4.7.)Iftestsaretobemadeatotherthanroomtemperature,
6.3.6 Whenever the electrodes are dissimilar in size or the bath must be provided with a means for heating or cooling
shape, the one at which the lowest concentration of stress the liquid, and with a means to ensure uniform temperature.
exists, usually the larger in size and with the largest radius, Small baths can in some cases be placed in an oven (see 6.4.2)
should be at ground potential. in order to provide temperature control. If forced circulation of
6.3.7 In some special cases liquid metal electrodes, foil the fluid is provided, care must be taken to prevent bubbles
electrodes, metal shot, water, or conductive coating electrodes from being whipped into the fluid. The temperature shall be
are used. It must be recognized that these may give results maintainedwithin65°Cofthespecifiedtesttemperatureatthe
differing widely from those obtained with other types of electrodes, unless otherwise specified. In many cases it is
electrodes. specified that specimens to be tested in insulating oil are to be
6.3.8 Because of the effect of the electrodes on the test previously impregnated with the oil and not removed from the
results, it is frequently possible to obtain additional informa- oilbeforetesting(seePracticeD2413).Forsuchmaterials,the
tion as to the dielectric properties of a material (or a group of bath must be of such design that it will not be necessary to
materials) by running tests with more than one type of expose the specimens to air before testing.
electrode. This technique is of particular value for research 6.4.2 If tests in air are to be made at other than ambient
testing. temperature or humidity, an oven or controlled humidity
6.4 Surrounding Medium—The document calling for this chamber must be provided for the tests. Ovens meeting the
test method should specify the surrounding medium and the requirementsofSpecificationD 5423andprovidedwithmeans
test temperature. Since flashover must be avoided and the for introducing the test voltage will be suitable for use when
effects of partial discharges prior to breakdown mimimized, only temperature is to be controlled.
even for short time tests, it is often preferable and sometimes 6.4.3 Testsingassesotherthanairwillgenerallyrequirethe
necessary to make the tests in insulating liquid (see 6.4.1). use of chambers that can be evacuated and filled with the test
Breakdown values obtained in insulating liquid may not be gas, usually under some controlled pressure. The design of
comparable with those obtained in air. The nature of the such chambers will be determined by the nature of the test
insulating liquid and the degree of previous use may influence program to be undertaken.

D 149 – 97a (2004)
6.5 Test Chamber—The test chamber or area in which the 8.2 Sampling procedures for quality control purposes
tests are to be made shall be of sufficient size to hold the test should provide for gathering of sufficient samples to estimate
equipment, and shall be provided with interlocks to prevent both the average quality and the variability of the lot being
accidental contact with any electrically energized parts. A examined; and for proper protection of the samples from the
number of different physical arrangements of voltage source, time they are taken until the preparation of the test specimens
measuring equipment, baths or ovens, and electrodes are in the laboratory or other test area is begun.
possible, but it is essential that (1) all gates or doors providing 8.3 For the purposes of most tests it is desirable to take
access to spaces in which there are electrically energized parts samples from areas that are not immediay adjacent to
be interlocked to shut off the voltage source when opened; ( 2) obvious defects or discontinuities in the material. The outer
clearances are sufficiently large that the field in the area of the few layers of roll material, the top sheets of a package of
electrodes and specimen are not distorted and that flashovers sheets, or material immediay next to an edge of a sheet or
and partial discharges (corona) do not occur except between roll should be avoided, unless the presence or proximity of
the test electrodes; and (3) insertion and replacement of defects or discontinuities is of interest in the investigation of
specimens between tests be as simple and convenient as the material.
possible.Visualobservationoftheelectrodesandtestspecimen 8.4 The sample should be large enough to permit making as
during the test is frequently desirable. many individual tests as may be required for the particular
material (see 12.4).
7. Hazards
9. Test Specimens
7.1 Warning—Lethal voltages may be present during this
9.1 Preparation and Handling:
test. It is essential that the test apparatus, and all associated
9.1.1 Prepare specimens from samples collected in accor-
equipment that may be electrically connected to it, be properly
dance with Section 8.
designed and installed for safe operation. Solidly ground all
9.1.2 When flat-faced electrodes are to be used, the surfaces
electrically conductive parts that any person might come into
of the specimens which will be in contact with the electrodes
contact with during the test. Provide means for use at the
shall be smooth parallel planes, insofar as possible without
completion of any test to ground any parts which: were at high
actual surface machining.
voltage during the test; may have acquired an induced charge
9.1.3 The specimens shall be of sufficient size to prevent
duringthetest;mayretaina chargeeven after disconnection of
flashover under the conditions of test. For thin materials it may
the voltage source. Thoroughly instruct all operators in the
be convenient to use specimens large enough to permit making
proper way to conduct tests safely. When making high-voltage
more than one test on a single piece.
tests, particularly in compressed gas or in oil, the energy
9.1.4 For thicker materials (usually more than 2 mm thick)
released at breakdown may be sufficient to result in fire,
the breakdown strength may be high enough that flashover or
explosion, or rupture of the test chamber. Design test equip-
intense surface partial discharges (corona) may occur prior to
ment, test chambers, and test specimens so as to minimize the
breakdown. Techniques that may be used to prevent flashover,
possibility of such occurrences and to eliminate the possibility
or to reduce partial discharge (corona) include:
of personal injury.
9.1.4.1 Immerse the specimen in insulating oil during the
7.2 Warning—Ozone is a physiologically hazardous gas at
test. See X1.4.7 for the surrounding medium factors influenc-
elevated concentrations. The exposure limits are set by gov-
ingbreakdown.Thismaybenecessaryforspecimensthathave
ernmental agencies and are usually based upon recommenda-
not been dried and impregnated with oil, as well as for those
tions made by the American Conference of Governmental
7
whichhavebeenpreparedinaccordancewithPracticeD 2413,
Industrial Hygienists. Ozone is likely to be present whenever
for example. (See 6.4.)
voltagesexistwhicharesufficienttocausepartial,orcomplete,
9.1.4.2 Machinearecessordrillaflat-bottomholeinoneor
discharges in air or other atmospheres that contain oxygen.
both surfaces of the specimen to reduce the test thickness. If
Ozone has a distinctive odor which is initially discernible at
dissimilar electrodes are used (such as Type 6 of Table 1) and
low concentrations but sustained inhalation of ozone can cause
only one surface is to be machined, the larger of the two
temporary loss of sensitivity to the scent of ozone. Because of
electrodes should be in contact with the machined surface.
thisitisimportanttomeasuretheconcentrationofozoneinthe
Caremustbetakeninmachiningspecimensnottocontaminate
atmosphere, using commercially available monitoring devices,
or mechanically damage them.
whenever the odor of ozone is persistently present or when
9.1.4.3 Apply seals or shrouds around the electrodes, in
ozone generating conditions continue. Use appropriate means,
contact with the specimen to reduce the tendency to flashover.
such as exhaust vents, to reduce ozone concentrations to
9.1.5 Materials that are not in flat sheet form shall be tested
acceptable levels in working areas.
using specimens (and electrodes) appropriate to the material
8. Sampling and the geometry of the sample. It is essential that for these
materials both the specimen and the electrodes be defined in
8.1 The detailed sampling procedure for the material being
the specification for the material.
tested should be defined in the specification for that material.
9.1.6 Whatever the form of the material, if tests of other
than surface-to-surface puncture strength are to be made,
7 define the specimens and the electrodes in the specification for
Available from the American Conference of Governmental Industrial Hygien-
ists, Building No. D-7, 6500 Glenway Ave., Cincinnati, OH 45211. the material.

D 149 – 97a (2004)
9.2 In nearly all cases the actual thickness of the test
specimenisimportant.Unlessotherwisespecified,measurethe
thickness after the test in the immediate vicinity of the area of
breakdown. Measurements shall be made at room temperature
(25 6 5°C), using the appropriate procedure of Test Methods
D374.
10. Calibration
10.1 In making calibration measurements, take care that the
valuesofvoltageattheelectrodescanbedeterminedwithinthe
accuracy given in 6.2, with the test specimens in the circuit. Rates
(V/s) 6 20 %
10.2 Use an independently calibrated voltmeter attached to
100
the output of the test voltage source to verify the accuracy of 200
500
the measuring device. Electrostatic voltmeters, voltage divid-
1000
ers,orpotentialtransformershavingcomparableaccuracymay
2000
be used for calibration measurement. 5000
10.3 At voltages above about 12 kV rms (16.9 kV peak) a FIG. 1 Voltage Profile of the Short-Time Test
sphere gap may be used to calibrate the readings of the
voltage-measuring device. Follow procedures as specified in
ANSI C68.1 in such calibration.
occasionalaveragetimetobreakdownfallingoutsidetherange
of 10 to 20 s. In this case, the times to failures shall be made
11. Conditioning
a part of the report.
11.1 The dielectric strength of most solid insulating mate- 12.2.1.3 In running a series of tests comparing different
rials is influenced by temperature and moisture content. Mate- material, the same rate-of-rise shall be used with preference
rials so affected should be brought to equilibrium with an given to a rate that allows the average time to be between 10
atmosphere of controlled temperature and relative humidity and 20 s. If the time to breakdown cannot be adhered to, the
before testing. For such materials, the conditioning should be time shall be made a part of the report.
included in the standard referencing this test method. 12.2.2 Method B, Step-by-Step Test—Apply voltage to the
11.2 Unless otherwise specified, follow the procedures in test electrodes at the preferred starting voltage and in steps and
Practice D618. duration as shown in Fig. 2 until breakdown occurs.
12.2.2.1 From the list in Fig. 2, select the initial voltage, V ,
11.3 For many materials the moisture content has more s
to be the one closest to 50 % of the experimentally determined
effect on dielectric strength than does temperature. Condition-
or expected breakdown voltage under the short time test.
ing times for these materials should be sufficiently long to
12.2.2.2 If an initial voltage other than one of the preferred
permit the specimens to reach moisture equilibrium as well as
values listed in Fig. 2 is selected, it is recommended that the
temperature equilibrium.
voltage steps be 10% of the preferred initial voltage immedi-
11.4 If the conditioning atmosphere is such that condensa-
ay below the selected value.
tionoccursonthesurfaceofthespecimens,itmaybedesirable
12.2.2.3 Apply the initial voltage by increasing the voltage
to wipe the surfaces of the specimens immediay before
from zero as rapidly as can be accomplished without introduc-
testing. This will usually reduce the probability of surface
ing a peak voltage exceeding that permitted in 6.1.3. Similar
flashover.
requirements shall apply to the procedure used to increase the
voltagebetweensuccessivesteps.Aftertheinitialstep,thetime
12. Procedure
required to raise the voltage to the succeeding step shall be
12.1 (Caution—see Section 7 before commencement of
counted as part of the time at the succeeding step.
any test.)
12.2.2.4 If breakdown occurs while the voltage is being
12.2 Methods of Voltage Application:
increased to the next step, the specimen is described as having
12.2.1 Method A, Short-Time Test—Apply voltage uni- sustained a dielectric withstand voltage, V , equal to the
ws
formlytothetesectrodesfromzeroatoneoftheratesshown voltage of the step just ended. If breakdown occurs prior to the
inFig.1untilbreakdownoccurs.Usetheshort-timetestunless end of the holding period at any step, the dielectric withstand
otherwise specified. voltage,V ,forthespecimenistakenasthevoltageatthelast
ws
12.2.1.1 When establishing a rate initially in order for it to completedstep.Thevoltageatbreakdown,V ,istobeusedto
bd
beincludedinanewspecification,selectaratethat,foragiven calculate dielectric breakdown strength. The dielectric with-
set of specimens, will give an average time to breakdown of stand strength is to be calculated from the thickness and the
between 10 and 20 s. It may be necessary to run one or two dielectric withstand voltage, V . (See Fig. 2.)
ws
preliminary tests in order to determine the most suitable 12.2.2.5 It is desirable that breakdown occur in four to ten
rate-of-rise. For many materials a rate of 500 V/s is used. steps, but in not less than 120 s. If failure occurs at the third
12.2.1.2 If the document referencing this test method speci- steporless,orinlessthan120s,whicheverisgreater,onmore
fied a rate-of-rise, it shall be used consistently in spite of thanonespecimeninagroup,thetestsshouldberepeatedwith
6

D 149 – 97a (2004)
Rates (V/s) 6 20 % Constraints
1 tbd > 120 s
2
5
Preferred starting voltages, V are 0.25, 0.50, 1, 2, 5, 10, 20, 50, and 100 kV.
s
10 Vbd = > 1.5 Vs
Step Voltage 12.5
when Increment 20
A
Vs(kV) is (kV) 25
50
5 or less 10 % of Vs
100
over 5 to 10 0.50
over 10 to 25 1 FIG. 3 Voltage Profile of Slow Rate-of-Rise Test
over 25 to 50 2
over 50 to 100 5
over 100 10
greater than 2.5 times the initial value (and at a time of over
A
Vs = 0.5 ( Vbd for Short-Time Test) unless constraints cannot be met.
________________________________________________________________ 120 s), increase the initial voltage.
Constraints
12.3 Criteria of Breakdown—Dielectric failure or dielectric
(t 1 - t0)=(t2 - t1) = ... = (60 6 5)s
Alternate step times, (20 6 3)s and (300 6 10)s breakdown (as defined in Terminology D 1711) consists of an
120s # t # 720s, for 60s steps
bd increase in conductance, limiting the electric field that can be
________________________________________________________________
sustained. This phenomenon is most commonly evidenced
FIG. 2 Voltage Profile of Step-by-Step Test
duringthetestbyanabruptvisibleandaudiblerupturethrough
the thickness of the specimen, resulting in a visible puncture
a lower initial voltage. If failure does not occur before the and decomposition of the specimen in the breakdown area.
twelfth step or greater than 720 s, increase the initial voltage. This form of breakdown is generally irreversible. Repeated
12.2.2.6 Record the initial voltage, the voltage steps, the applicationsofvoltagewillsometimesresultinfailureatlower
breakdown voltage, and the length of time that the breakdown
voltages (sometimes unmeasurably low), usually with addi-
voltage was held. If failure occurred while the voltage was
tional damage at the breakdown area. Such repeated applica-
being increased to the starting voltage the failure time shall be
tions of voltage may be used to give positive evidence of
zero.
breakdown and to make the breakdown path more visible.
12.2.2.7 Other time lengths for the voltage steps may be
12.3.1 Arapid rise in leakage current may result in tripping
specified, depending upon the purpose of the test. Commonly
of the voltage source without visible decomposition of the
used lengths are 20 s and 300 s (5 min). For research purposes,
specimen. This type of failure, usually associated with slow-
it may be of value to conduct tests using more than one time
rise tests at elevated temperatures, may in some cases be
interval on a given material.
reversible,thatis,recoveryofthedielectricstrengthmayoccur
12.2.3 Method C, Slow Rate-of-Rise Test—Apply voltage to
the test electrodes, from the starting voltage and at the rate if the specimen is allowed to cool to its original test tempera-
shown in Fig. 3 until breakdown occurs. ture before reapplying voltage. The voltage source must trip
12.2.3.1 Selecttheinitialvoltagefromshort-timetestsmade rapidlyatrelativelylowcurrentforthistypeoffailuretooccur.
as specified in 12.2.1. The initial voltage shall be reached as 12.3.2 Tripping of the voltage source may occur due to
specified in 12.2.2.3.
flashover, to partial discharge current, to reactive current in a
12.2.3.2 Use the rate-of-voltage rise from the initial value
highcapacitancespecimen,ortomalfunctioningofthebreaker.
specified in the document calling for this test method. Ordi-
Such interruptions of the test do not constitute breakdown
narily the rate is selected to approximate the average rate for a
(except for flashover tests) and should not be considered as a
step-by-step test.
satisfactory test.
12.2.3.3 Ifmorethanonespecimenofagroupofspecimens
12.3.3 If the breaker is set for too high a current, or if the
breaks down in less than 120 s, reduce either the initial voltage
breaker malfunctions, excessive burning of the specimen will
or the rate-of-rise, or both.
occur.
12.2.3.4 Ifmorethanonespecimenofagroupofspecimens
breaks down at less than 1.5 times the initial voltage, reduce 12.4 Number of Tests—Make five breakdowns unless oth-
the initial value. If breakdown repeatedly occurs at a value erwise specified for the particular material.

D 149 – 97a (2004)
13. Calculation 15. Precision and Bias
13.1 CalculateforeachtestthedielectricstrengthinkV/mm 15.1 The results of an interlaboratory study with four
or V/mil at breakdown, and for step-by-step tests, the gradient laboratories and eight materials are summarized in Table 2.
at the highest voltage step at which breakdown did not occur. This study made use of one electrode system and one test
8
13.2 Calculate the average dielectric strength and the stan- medium.
dard deviation, or other measure of variability. 15.2 Single-Operator Precision—Depending upon the vari-
ability of the material being tested, the specimen thickness,
14. Report
method of voltage application, and the extent to which tran-
14.1 Report the following information: sient voltage surges are controlled or suppressed, the coeffi-
14.1.1 Identification of the test sample. cientofvariation(standarddeviationdividedbythemean)may
14.1.2 For Each Specimen: varyfromalow1%toashighas20 %ormore.Whenmaking
14.1.2.1 Measured thickness, duplicate tests on five specimens from the same sample, the
14.1.2.2 Maximum voltage withstood (for step-by-step coefficient of variation usually is less than 9 %.
tests), 15.3 Multilaboratory Precision—The precision of tests
14.1.2.3 Dielectric breakdown voltage, made in different laboratories (or of tests made using different
14.1.2.4 Dielectric strength (for step-by-step tests), equipment in the same laboratory) is variable. Using identical
14.1.2.5 Dielectric breakdown strength, and
A
TABLE 2 Dielectric Strength Data Summary From Four Laboratories
Dielectric Strength (V/mil)
Thickness Standard Coefficient of
Material
(in. nom.) Deviation Variation (%)
mean max min
Polyethylene 0.001 4606 5330 4100 332 7.2
Terephthalate
Polyethylene 0.01 1558 1888 1169 196 12.6
Terephthalate
Fluorinated 0.003 3276 3769 2167 333 10.2
Ethylene
Propylene
Fluorinated 0.005 2530 3040 2140 231 9.1
Ethylene
Propylene
PETP fiber 0.025 956 1071 783 89 9.3
reinforced
epoxy resin
PETP fiber 0.060 583 643 494 46 7.9
reinforced
epoxy resin
Epoxy-Glass 0.065 567 635 489 43 7.6
Laminate
Crosslinked 0.044 861 948 729 48 5.6
Polyethylene
Average 8.7
A
Tests performed with specimens in oil using Type 2 electrodes (see Table 1).
14.1.2.6 Location of failure (center of electrode, edge, or types of equipment and controlling specimen preparation,
outside). electrodes and testing procedures closely, the single-operator
14.1.3 For Each Sample: precision is approachable. When making a direct comparison
14.1.3.1 Average dielectric withstand strength for step-by- ofresultsfromtwoormorelaboratories,evaluatetheprecision
step test specimens only, between the laboratories.
14.1.3.2 Average dielectric breakdown strength,
15.4 If the material under test, the specimen thickness, the
14.1.3.3 Indication of variability, preferably the standard
electrode configuration, or the surrounding medium differs
deviation and coefficient of variation,
from those listed in Table 1, or if the failure criterion of the
14.1.3.4 Description of test specimens,
current-sensing element of the test equipment is not closely
14.1.3.5 Conditioning and specimen preparation,
controlled, the precisions cited in 15.2 and 15.3 may not be
14.1.3.6 Ambient atmosphere temperature and relative hu-
realized. Standards which refer to this method should deter-
midity,
mineforthematerialwithwhichthatstandardisconcernedthe
14.1.3.7 Surrounding medium,
applicability of this precision statement to that particular
14.1.3.8 Test temperature,
material. Refer to 5.4-5.8 and 6.1.6.
14.1.3.9 Description of electrodes,
14.1.3.10 Method of voltage application,
14.1.3.11 If specified, the failure criterion of the current-
sensing element, and 8
The complete report is available from ASTM International. Request RR:D09-
14.1.3.12 Date of test. 1026.

D 149 – 97a (2004)
15.5 Use special techniques and equipment for materials 16. Keywords
having a thickness of 0.001 in. or less.The electrodes must not
16.1 breakdown; breakdown voltage; calibration; criteria of
damage the specimen upon contact. Accuray determine the
breakdown; dielectric breakdown voltage; dielectric failure;
voltage at breakdown.
dielectric strength; electrodes; flashover; power frequency;
15.6 Bias—This test method does not determine the intrin-
process-control testing; proof testing; quality-control testing;
sic dielectric strength. The test values are dependent upon
rapid rise; research testing; sampling; slow rate-of-rise; step-
specimen geometry, electrodes, and other variable factors, in
by-step; surrounding medium; voltage withstand
addition to the properties of the sample, so that it is not
possible to make a statement of bias.
APPENDIXES
(Nonmandatory Information)
X1. SIGNIFICANCE OF THE DIELECTRIC STRENGTH TEST
X1.1 Introduction directly between the electrodes. Weak spots within the volume
under stress sometimes determine the test results.
X1.1.1 A brief review of three postulated mechanisms of
breakdown, namely: (1) the discharge or corona mechanism,
X1.4 Influence of Test and Specimen Conditions
(2)thethermalmechanism,and(3)theintrinsicmechanism,as
well as a discussion of the principal factors affecting tests on
X1.4.1 Electrodes— In general, the breakdown voltage will
practical dielectrics, are given here to aid in interpreting the
tend to decrease with increasing electrode area, this area effect
data. The breakdown mechanisms usually operate in combina-
being more pronounced with thin test specimens. Test results
tionratherthansingly.Thefollowingdiscussionappliesonlyto
are also affected by the electrode geometry. Results may be
solid and semisolid materials.
affected also by the material from which the electrodes are
constructed, since the thermal and discharge mechanism may
X1.2 Postulated Mechanisms of Dielectric Breakdown
be influenced by the thermal conductivity and the work
X1.2.1 Breakdown Caused by Electrical Discharges—In function, respectively, of the electrode material. Generally
many tests on commercial materials, breakdown is caused by speaking, the effect of the electrode material is difficult to
electrical discharges, which produce high local fields. With
establish because of the scatter of experimental data.
solid materials the discharges usually occur in the surrounding
X1.4.2 Specimen Thickness—The dielectric strength of
medium, thus increasing the test area and producing failure at
solid commercial electrical insulating materials is greatly
or beyond the electrode edge. Discharges may occur in any
dependentuponthespecimenthickness.Experiencehasshown
internal voids or bubbles that are present or may develop.
that for solid and semi-solid materials, the dielectric strength
These may cause local erosion or chemical decomposition.
varies inversely as a fractional power of the specimen thick-
These processes may continue until a complete failure path is
ness, and there is a substantial amount of evidence that for
formed between the electrodes.
relatively homogeneous solids, the dielectric strength varies
X1.2.2 Thermal Breakdown—Cumulative heating develops
approximay as the reciprocal of the square root of the
inlocalpathswithinmanymaterialswhentheyaresubjectedto
thickness. In the case of solids that can be melted and poured
high electric field intensities, causing dielectric and ionic
to solidify between fixed electrodes, the effect of electrode
conduction losses which generate heat more rapidly than can
separationislessclearlydefined.Sincetheelectrodeseparation
be dissipated. Breakdown may then occur because of thermal
can be fixed at will in such cases, it is customary to perform
instability of the material.
dielectricstrengthtestsonliquidsandusuallyonfusiblesolids,
X1.2.3 Intrinsic Breakdown—If electric discharges or ther-
with electrodes having a standardized fixed spacing. Since the
mal instability do not cause failure, breakdown will still occur
when the field intensity becomes sufficient to accelerate elec- dielectric strength is so dependent upon thickness it is mean-
trons through the material. This critical field intensity is called ingless to report dielectric strength data for a material without
the intrinsic dielectric strength. It cannot be determined by this stating the thickness of the test specimens used.
test method, although the mechanism itself may be involved. X1.4.3 Temperature—The temperature of the test specimen
and its surrounding medium influence the dielectric strength,
X1.3 Nature of Electrical Insulating Materials although for most materials small variations of ambient tem-
X1.3.1 Solid commercial electrical insulating materials are perature may have a negligible effect. In general, the dielectric
generally nonhomogeneous and may contain dielectric defects strength will decrease with increasing temperatures, but the
of various kinds. Dielectric breakdown often occurs in an area extent to which this is true depends upon the material under
of the test specimen other than that where the field intensity is test. When it is known that a material will be required to
greatest and sometimes in an area remote from the material function at other than normal room temperature, it is essential

D 149 – 97a (2004)
that the dielectric strength-temperature relationship for the properties are usually such that edge breakdown will generally
material be determined over the range of expected operating occur if the electric strength, E , approaches the value given
s
temperatures. by:
X1.4.4 Time—Test results will be influenced by the rate of
4.2 63
E kV/mm (X1.4)
voltage application. In general, the breakdown voltage will s 5 Sts 1e8sD
tend to increase with increasing rate of voltage application.
In cases of large thickness of specimen and low permittivity
This is to be expected because the thermal breakdown mecha-
of specimen, the term containing t becomes relatively insig-
s
nismistime-dependentandthedischargemechanismisusually
nificant and the product of permittivity and electric strength is
time-dependent, although in some cases the latter mechanism 10
approximay a constant. Whitehead also mentions (p. 261)
may cause rapid failure by producing critically high local field
that the use of moist semiconducting oil can affect an appre-
intensitives.
ciablereductioninedgedischarges.Unlessthebreakdownpath
X1.4.5 Wave Form—In general, the dielectric strength is
between the electrodes is solely within the solid, results in one
influenced by the wave form of the applied voltage.Within the
medium cannot be compared with those in a different medium.
limitsspecifiedinthismethodtheinfluenceofwaveformisnot
It should also be noted that if the solid is porous or capable of
significant.
being permeated by the immersion medium, the breakdown
X1.4.6 Frequency—The dielectric strength is not signifi-
strength of the solid is directly affected by the electrical
cantly influenced by frequency variations within the range of
properties of immersion medium.
commercial power frequencies provided for in this method.
X1.4.8 Relative Humidity—The relative humidity influ-
However, inferences concerning dielectric strength behavior at
ences the dielectric strength to the extent that moisture ab-
other than commercial power frequencies (50 to 60 Hz) must
sorbed by, or on the surface of, the material under test affects
not be made from results obtained by this method.
the dielectric loss and surface conductivity. Hence, its impor-
X1.4.7 Surrounding Medium—Solid insulating materials
tance will depend to a large extent upon the nature of the
havingahighbreakdownvoltageareusuallytestedbyimmers-
material being tested. However, even materials that absorb
ing the test specimens in a liquid dielectric such as transformer
little or no moisture may be affected because of greatly
oil, silicone oil, or chlorofluorocarbons, in order to minimize
increased chemical effects of discharge in the presence of
theeffectsofsurfacedischargespriortobreakdown.Ithasbeen
9 moisture. Except in cases where the effect of exposure on
shownbyS.Whitehead thatinordertoavoiddischargesinthe
dielectric strength is being investigated, it is customary to
surrounding medium prior to reaching the breakdown voltage
control or limit the relative humidity effects by standard
of the solid test specimen, in alternating voltage tests it is
conditioning procedures.
necessary that
2 2 X1.5 Evaluation
E D 1 E D 1 (X1.1)
me8m = m 1 . se8s = s 1
X1.5.1 A fundamental requirement of the insulation in
If the liquid immersion medium is a low loss material, the electrical apparatus is that it withstand the voltage imposed on
criterion simplifies to it in service. Therefore there is a great need for a test to
evaluatetheperformanceofparticularmaterialsathighvoltage
2
E E D 1 (X1.2)
me8m . se8s = s 1 stress. The dielectric breakdown voltage test represents a
and if the liquid immersion medium is a semiconducting convenient preliminary test to determine whether a material
material the criterion becomes merits further consideration, but it falls short of a complete
evaluation in two important respects. First, the condition of a
E 2 f E (X1.3)
msm . p er e0 s
material as installed in apparatus is much different from its
condition in this test, particularly with regard to the configu-
where: ration of the electric field and the area of material exposed to
E = electric strength,
it, corona, mechanical stress, ambient medium, and association
f = frequency,
with other materials. Second, in service there are deteriorating
e and e8 = permittivity,
influences, heat, mechanical stress, corona and its products,
D = dissipation factor, and
contaminants, and so forth, which may reduce the breakdown
s = conductivity (S/m).
voltage far below its value as originally installed. Some of
Subscripts:
these effects can be incorporated in laboratory tests, and a
m refers to immersion medium,
better estimate of the material will result, but the final
r refers to relative,
consideration must always be that of the performance of the
0 refers to free space,
-12 material in actual service.
(e0 =8.854310 F/m) and
X1.5.2 The dielectric breakdown test may be used as a
s refers to solid dielectric.
material inspection or quality control test, as a means of
X1.4.7.1 Whitehead points out that it is therefore desirable
to increase E and ,or , if surface discharges are to be
m em sm
avoided. Transformer oil is usually specified and its dielectric 10
Starr, R. W., “Dielectric Materials Ionization Study” Interim Engineering,
Report No. 5, Index No ME-111273.Available from Naval Sea Systems Command
Technical Library, Code SEA 09B 312, National Center 3, Washington, DC
9
Whitehead, S., Dielectric Breakdown of Solids, Oxford University Press, 1951. 20362-5101.

D 149 – 97a (2004)
inferring other conditions such as variability, or to indicate the test it is the relative value of the breakdown voltage that is
deteriorating processes such as thermal aging. In these uses of important rather than the absolute value.
X2. STANDARDS REFERRING TO TEST METHOD D149
X2.1 Introduction X2.1.2 In some standards which specify that the dielectric
strength or the breakdown voltage is to be determined in
X2.1.1 The listing of documents in this appendix provides
reference to a broad range ofASTM standards concerned with accordance with Test Method D 149, the manner in which the
determination of dielectric strength at power frequencies or reference is made to this test method is not compley in
with elements of test equipment or elements of procedural conformance with the requirements of 5.5. Do not use another
details used to determine this property. While every effort has document, including those listed in this appendix, as a model
been made to include as many as possible of the standards forreferencetothistestmethodunlessthereisconformitywith
referring to Test Method D 149, the list may not be complete, 5.5.
and standards written or revised after publication of this
appendix are not included.

華洋試驗(yàn)機(jī)產(chǎn)品網(wǎng):http://www.huayangyq.com

 

華洋儀器展覽網(wǎng):http://www.huayangyq.net

 

華洋儀器化工網(wǎng):http://www.brgefx26.cn

 

華洋儀器百業(yè)網(wǎng):http://www.jlhyyq.cn

 

 

国产99青草视频在线播放视 久久婷婷色综合一区二区 久久婷综合五月天啪网夜夜春亚洲嫩草影院 国产色秀视频在线播放 老少交欧美另类 亚洲aⅴ波多系列中文字幕 日韩在线观看网址 欧美日韩精品一区二区在线观看 国产精品亚洲一区二区三区在线观看 99爱国产精品免费视频 曰韩第一页综合久久道第88频 国产又粗又掹又爽又黄的aa 国内自拍另类专区亚洲区 国产免费久久久久久免费看 日韩免费高清大片在线 日韩欧美在线三级片′ 国产免费播放一区二区 免费能直接在线观看黄的视频 91精品综合久久久久久五月丁香 成全我在线观看免费观看 日韩国产午夜在线精品 一区中文字幕在线五月婷婷 国产一级毛片特级毛国产 嫩草亚洲国产精品 国产综合欧美日韩视频一区 丰满人妻熟妇乱又伦精品 日本在线观看片免费人成视频播放 国产欧美日韩在线综合网 精品网在线电影不等待 国产精品免费无遮挡无码永久视频 欧美亚洲制服一区二区三区高清 日本精品AⅤ在线观看 亚洲av无码专区在线播放 日韩精品人妻无码一区无码毛片 欧美综合自拍亚洲久图 成人性一级视频在线观看 精品国语任你躁在线 99久久国产综合精麻豆 99久久国产综合精品色男同 人妻无码AⅤ中文系列久久免费 中文字幕无卡高清视频 激情综合婷婷丁香五月蜜桃 亚洲乱码一区二区三区在线欧美 亚洲AV无码1区2区久久 2012最新最全中文字幕 热久久这里是精品6免费观看 成人免费视频一区 不卡亚洲人成色777777精品 尤物av无码国产在线观看 99视频30精品视频在线观看 国产欧美日韩中文久久 被cao的合不拢腿的皇后 日韩精品无码人成中字幕 亚洲日韩国产成在线发布一区二区三区 成全我在线观看免费观看 亚洲成a人片在线观看中文app 日韩.欧美.国产.无需播放器 久碰香蕉在线观看不卡 国产福利酱国产一区二区 亚洲电影无码在线免费播放 人伊香蕉久久精品 亚洲AV福利天堂在线观看不卡 国产一区二区国产精品 久久精品人妻中文系列 韩日午夜在线资源一区二区 国产又黄又粗又色又爽的视频 人妻AV中出无码内射 国产日产无码一区二区 亚洲av不卡电影在线观看 亚洲日本午夜激情 欧美人成网站中文字幕 欧美高清视频在线观看 国产综合欧美日韩视频一区 高清在线欧美亚洲午夜欧洲 国产l精品国产亚洲区在线观看 极品国产一区二区三区 亚洲一区二区三区国产精品 亚洲伊人伊成久久人综合网 97亚洲精品国偷自产在线麻豆 日韩精品一区二区天堂 久久99精品国产麻豆婷 久久精品国产99精品亚洲 国产精视频一二区 国产精品人人做人人 国产精品无码一区二区视频观看 (愛妃)国产精品黄色视频 久久99热这里只有精品国产 亚洲av乱码专区国产乱码 麻豆极品JK白丝袜自慰喷水久久 乱女伦露脸对白在线播放 五月激情综合婷婷 少妇人妻无码精品视频 四虎成人精品永久免费AV影视 无码成人片在线播放 制服丝袜有码中文字幕在线 欧美日韩成人在线精品影片 亚洲欧美一区二区不卡精品 精品国产片在线免费观看 波多野结衣在线精品视频 成人AAA片一区国产精品 国产无码在线观看免费直播 国产大片亚州一区二区三区 亚洲日韩精品中文HD无码不卡 午夜福利电影在线看 刺激一区仑乱 在线免费a级毛片 91人成网站色www免费 亚洲AV无码国产精品夜色午夜 2021天天色 аⅴ资源中文在线天堂 国产不卡av一区二区在线观看 亚洲AV无码片一区二区三区 国产AV无码专区亚洲AV果冻传媒 国产精品51麻豆CM传媒 囯产目拍亚洲精品yt166 JIZZJIZZJIZZ亚洲熟妇高清 热这里只有精品国产99 国产日产欧产精品精品推荐免费 18岁日韩内射颜射午夜久久成人 琪琪电影网午夜理论片 久久96热在精品国产高清 亚洲AV人片不卡无码 国产91精品老熟女泻火 午夜一区欧美二区高清三区 亚洲综合图区天堂在线 国产高清黄色视频 jealousvue日本水多多 新视觉影视电影网 91精品综合在线偷观看视频 国产综合欧美日韩视频一区 人妻少妇中文在线视频 人人爽人人添人人超 91精品国产综合久久婷婷香蕉 国产亚洲美女精品久久 99福利电影 国产欧美日韩综合一区在线播放 后入内射欧美99二区视频 久cao在线香蕉69影院 伊利久久情人合法网18 亚洲国产日韩欧美在线看片 欧美性爱操逼视频 无码高潮少妇毛多水多水免费 天堂Aⅴ无码一区二区三区 无码人妻一区二区三区免费 亚洲精品国产精品乱码66 日韩一区二区视频在线观看 JIZZJIZZJIZZ亚洲熟妇高清 自拍视频在线日本欧美 亚洲日韩一区二区午夜福利蜜桃 全免费一级毛片大全网站 在线视频中文字幕久热 感官先生电影无删减版在线观看 国产成人最新毛片基地 国产精品综合久久久 欧美熟妇精品一区二区三区 最好的观看2018中文 亚洲国产嫩草影院 国产又粗又猛又黄视频 亚洲伊人伊成久久人综合网 美女扒开裤子让男人捅 人人爽人人爽人人片av正在播放 91精品综合在线偷观看视频 亚洲天堂一区二区三区 亚洲一区二区综合婷婷 精品亚洲专区无码 99久久精品国产一区二区野战 免费无码观看AV在线播放 欧美一级99在线 (愛妃)国产精品黄色视频 xxxxx大片在线观看 亚洲免费视频一二区 欧美日韩亚洲中文字幕 欧美日产国产精品一区二区 好看的毛片网站中文字幕的 精品日本三级在线观看视频 午夜男人福利深夜影院 亚洲性啪啪无码AV天堂 国产精品开放90后亚洲 性色AV乱码一区二区三区2 亚洲AV秘无码久久四季 国产香蕉在线精彩视频 又粗又大ⅩXXXA片在线观看 亚洲国产成人久久一区WWW 在线资源av每日更新不卡 欧美日本一区视频免费 91人成网站色www免费 亚洲Av永久无码天堂影院 亚洲Aⅴ精品在线播放 欧美日韩1区2区 日本伦理电影网免费播放 日韩一区二区视频在线观看 日本理论午夜中文字幕 日本精品区视频 国产大片一级在线观看 伊人色综合久久天天五月婷 久久久噜久噜久久另类 韩国r级中文字幕在线播放 欧美性XXXXX极品少妇直播 西西4444www大胆无码 欧美高清视频在线观看 久久www免费人成看片老司机 欧美精品一区二区三区免费观看 中文字幕亚洲乱码精品 在线视频中文2021 日日日射射射电影 国产午夜精品一区在线观看 亚洲色婷婷久久久综合日本 国产精品TV在线麻豆 羞羞午夜男女爽爽成人影院一 一群黑人大战亚裔女在线播放 久久久久国色AⅤ免费观看 永久免费AⅤ无码网站国产 九九热精品免费视频 亚洲AV日韩A∨在线观看 av无码中文字幕不卡一区二区三区 无无精品国产v日韩v亚洲爆乳 国色天香精品卡2卡3卡4 风韵丰满熟妇啪啪区老熟熟女 亚洲综合无码久久精品综合 国产日韩欧美在线第一页 2021最新国产成人精品免费 欧美成aⅴ人高清怡红院 六月七月丁香缴情欧美 亚洲?V无码乱码在线观看裸奔 亚洲欧美日韩国产一级A 国内精自线一二三四2021 最近更新中文字幕4 亚洲成a人片在线观看中文app 无码人妻久久一区二区三区蜜桃 中出制服丝袜无码制服av 亚洲精品无码成人片久久 97精品人妻无码在线视频 日韩国产亚洲欧美在线 欧美三级在线现看中文谷歌 欧美一区亚洲国产区精品国产精品色拉拉免费看 国产中文字幕在线观看 日日噜狠狠噜天天噜AV 超碰aⅴ亚洲中文字幕 国产一级国语一级毛片 国产又粗又长天天操夜夜操 97超碰国产一区二区三区 91亚洲精品高清久久久 中文字幕乱码不卡一区 精品亚州毛片在线免费观看 西西4444www大胆无码 中文字幕99久久亚洲精品 国产剧+果冻传媒 国产成年无码久久久久下载 精品国产一区二区三区不卡 99久久无色码中文字幕人妻 亚洲一久久久久久久久 惠民福利亚洲国产日韩在线精品频道 久久精品一区二区三区资源网 精品国产免费观看久久久 欧美亚洲制服一区二区三区高清 国产福利在线观看一区二区 久久这里只有精品66re99 99这里只有精品视频在线 亚洲秘无码一区二区三区91 国产福利在线高清导航大全 免费能直接在线观看黄的视频 亚洲一卡2卡三卡4卡国色天香 精品久久一品久久 人人爽人人操人人 欧美高清国产一区二区三区 国产午夜理论不卡琪琪 97无码人妻福利免费公开在线视频 国产精美欧美一区二区三区 忘忧草视频在线播放免费观看 久久久久亚洲AV无码专区网站 91福利无码网站 亚洲高清无码在线 台湾佬中文字幕 91区国产福利在线观看午夜 亚洲人交乣女BBW 野狼av午夜福利在线观看 欧美亚洲综合久久偷偷人人 久久精品人妻中文系列 欧美精品VIDEOSSEX少妇 欧美高清性XXXXHDvideosex 手机看中文字幕一区无码 亚洲第一黄色网址 国产精品99无码一区二区视频 久久中文精品无码中文字幕下载 观看亚洲国产免费不卡视频 大肉大捧一进一出的视频 中文字幕无卡高清视频 6080三级在线观看视频 久久AV喷潮久久AV高 欧美成人区一区二区在线 无码avav无码中文字幕 国产国产成人精品久久蜜 自拍偷自拍亚洲精品被多人伦好爽 国产又粗又猛又黄视频 92国产精品午夜福利 精品粉嫩国产18尤物在线观看 给我免费观看片在线电影的 国产乱人伦在线直播放 国产日韩综合一区在线观看 国产精品亚洲精品日韩一本大全 久久综合九色婷婷97 日韩av一区二区精品不卡 欧美国产日本高清不卡免费 91久久精品美女高潮喷水白 国产高清美女一级a毛片久久 美女高潮无套内谢视频免费 国产精品免费看久久久软件 久久久亚洲精品成人影院 国产精品五月天 久久国产欧美日韩精品图片 在线欧美a欧美综合影院 国产裸舞福利在线视频合集 日韩高清一区二区三区不卡 无码成人午夜福利久久 国产黄视频在线观看 思思久久精品免费视频 国内少妇偷人精品视频免费wz 亚洲欧美日韩国产一级A 国产成人精品久久二区二区 亚洲av乱码专区国产乱码 91精品国产情侣高潮对白 漂亮人妻当面被黑人玩弄 国产十八禁视频在线网站 久久精品国产精品无码 亚洲国产成人精品久久综合99久久免费 久久超碰97人人做人人爱 欧美97久久人人模人人爽 久久这里只有精品66re99 欧美高清性XXXXHDvideosex 日韩亚洲欧美国产精品 日韩第一页在线观看 国产精品99无码一区二区视频 无码人妻av中文字幕久久 韩国三级A视频在线观看 97福利精品第一导航 久久国产乱子伦精品免费女人 日产精品一卡2卡三卡4卡乱码 免费一级一片一毛片 人妻无码AⅤ中文系列久久免费 日韩精品在线观看国产精品 亚洲av综合色区无码4区 亚洲av无码专区在线播放 精心挑选日韩无码精品 国产精品免费看久久久软件 国产每日精品亚洲精品 国产韩国日本欧美在线观看 中文字幕AV熟女 国产成年无码久久久久下载 国产精选欧美日韩一区二区 亚洲成aⅴ人在线观看 亚洲手机无码电影在线 亚洲成AⅤ人片天堂网无码 一级做a爰片久久毛片唾 日韩欧美理论在线观看 亚欧一级黄色片美中文字幕在线观看 日韩欧美一区二区久久 久久一本日韩精品中文字幕屁孩 久久精品观看影院2828 成人爽a毛片一区二区免费 91成人午夜性a一级毛片 国产精品二三视频 欧美熟妇精品一区二区三区 国产高清美女一级a毛片久久 成人性一级视频在线观看 99精品热在线在线观看视频 国产精品一区二区三区97 日韩精品久久九九久久99在 日本韩国亚洲综合日韩欧美国产 久久久免费看黄A级毛片 97久久超碰国产精品2021 国产午夜片在线观看 天天在线视频精品分类 久久精品国产69国产精品亚洲 亚洲AV无码片一区二区三区 国内少妇偷人精品视频免费wz 一区中文字幕在线五月婷婷 无码国产精成人午夜视频一区二区 国产精品嫩草影院88AV 成人免费视频一区 2023最新好看的电影 亚洲精品国产自在在线观看爱国者 国产免费播放一区二区 亚洲精品无码AⅤ片影音先锋 亚洲人成伊人成综合网久久久 亚洲人成在线观看无码 国产AV夜色一区二区三区 亚洲欧美日韩综合俺去了伊人 国产高清色诱视频在线播放 制服中文字幕自拍有码 亚洲乱码一区二区三区在线欧美 国产国产久热这里只有精品 亚洲国产精品va在线播放 精品国产无码一区二区 午夜福利免费视频921000电影 亚洲私人无码内射免费观看 欧美日韩一区二区一品道久久久 国产一级国语一级毛片 亚州一区二区三区中文字幕国产精品 色综合久久天天综线观看 亚洲乱码高清午夜理论电影 国产成年码av片在线观看 精品无码乱码AV片国产在线观看 爽到高潮无码视频在线观看 1024无码AV电影黄色网站 国产亚欧美一区二区三区奶水 伊人精品视频一区二区三区 国产伦精品一区二区三区视频抖音 日韩欧美国产成人片在线观看 欧美日韩一区二区视频图片 在线素人亚洲国产 六月婷婷综合激情网 午夜最新福利电影 久久96热在精品国产高清 国产精品一区二区成人久久 久久AV免费高潮喷水无码 国产在线观看一区精品 欧美精品一区二区三区免费观看 今天免费中文字幕视频 欧美三级午夜理伦三级小说 无码纯肉高H视频在线观看 亚洲AV无码久久精品一区二区三区 亚洲精品无码永久观看 国产欧洲日韩波多野结衣生化 久久综合色网 内射视频←WWW夜 亚洲欧美精品一中文字幕 日韩国产亚洲一区二区三区 中文字幕制服综合第一页 国产免费AⅤ片无码永久免费 jealousvue日本水多多 国产人成亚洲第一网站在线播放 日韩免费高清大片在线 国产成人色视频一区二区三区 色欧美日韩国产亚洲综合在线观看 久久狠狠色噜噜狠狠狠狠97 无码日韩AV一区二区三区 男人扒开女人双腿猛进女人机机里 国产精品亚洲精品日韩一本大全 亚洲精品视在线看1 国内自拍另类专区亚洲区 亚洲另类激情综合偷自拍 精品无码国产2020视频 久久婷综合五月天啪网夜夜春亚洲嫩草影院 国产在亚洲线视频观看 国产亚洲一级二级黄片 国产在线观看一区精品 亚洲第一区无码专区 尤物久久久久国产综合精品 欧美亚洲制服一区二区三区高清 精品久久一品久久 国产亚洲欧美一区二区 新国产三级在线观看播放 无码一区二区三区不卡av 国产欧美日韩精品在钱 精品久久一品久久 日韩.欧美.国产.无需播放器 97超级碰久久久久香蕉人人 午夜最新福利电影 free性满足HD国产精品久 最近免费中文字幕大全高清 欧美性大战久久久久久久 亚洲伊人伊成久久人综合网 天天躁日日躁狠狠躁蜜臀av 国产日韩欧美一级视频在线看 在线观看亚洲av日韩a∨ 午夜福利免费视频921000电影 美国一级aⅤ一区二区在线 性欧美暴力猛交在线播放 久久精品色妇熟女丰满 久久精品国产99精品国产 日韩精品卡通动漫网站 尤物yw193国产在线观看不卡 国产又粗又掹又爽又黄的aa 午夜一区欧美二区高清三区 国产一区二区二区精品视频 亚州一区二区三区中文字幕国产精品 亚洲日韩国产成在线发布一区二区三区 日本精品AⅤ在线观看 在线资源av每日更新不卡 亚洲人成影院在线播放高清 日韩一区二区久久 亚洲av无码片在线播放 92极品福利少妇午夜100集 美国一级黄色大片 青青河边草高清免费版新闻 不卡人妻有码中文字幕在线 国产亚洲一级二级黄片 最新国模裸体精品自拍视频 日韩精品人妻无码一区无码毛片 亚洲中文字幕a∨ 中国老肥熟妇女bbw 日韩成人精品在线观看 久cao在线香蕉69影院 国产成人免费视频精品 在线免费观看毛片网站 阿V精品一区二区三区 黄色网站网址在线观看 天天看片av无码中文字幕 亚洲精品在线无码 国产乱子轮xxx农村 国产成人亚洲精品电影 欧美三级在线现看中文谷歌 古代乱亲h女秽乱常伦 欧美一级欧美三级欧美做a爱 国产精品高清国产三级囯产AV 免费看片A级毛片免费看 大地资源电影中文在线观看 日本中文人妻字幕有码视频频 亚洲国产精品无码久久久 亚洲国产一区二区三区 亚洲毛片免费在线 久久久久青草线焦综合 18禁黄网站禁片无遮挡观看免费 国产亚欧美一区二区三区奶水 丰满少妇被猛烈进入 成人免费视频一区 国产精选欧美日韩一区二区 亚洲免费小视频 野狼av午夜福利在线观看 久久久免费看黄A级毛片 中文字幕人妖一区二区 久久一区精品 国产福利一区二视频播放24p 亚洲男人第一av网站 亚洲一卡2卡三卡4卡国色天香 中文丝袜人妻一区二区 精品亚州毛片在线免费观看 亚洲粉嫩高潮的18p 日韩精品久久九九久久99在 爽爽影院免费在线观看国产 台湾佬中文字幕 自拍偷拍一区二区三区四区 精品国产乱子一区二区 国产一国产精品一级毛片 在线欧美a欧美综合影院 无码白嫩小泬无套在线观看 国产精品免费视频一区二区 精品欧美成人高清在线观看 伊人色综合久久天天五月婷 亚洲午夜理论片在线观看 亚洲国产另类久久久精品网站 国内综合视频一区二区三区 欧美高清国产一区二区三区 国产无码在线观看免费直播 久久久久亚洲AV无码永不 97福利精品第一导航 天天做天天爱天天爽综合网 伊利久久情人合法网18 国产又粗又长天天操夜夜操 亚洲成人在线一区 国产一级毛片特级毛国产 婷婷网五月天天综合天天爱 国产日韩欧美二区 又黄又粗暴的gif动态图 国产不卡无码高清毛片一区二区三区 久久一本日韩精品中文字幕屁孩 国产一级A级免费视频 国产一级毛片特级毛国产 97人妻互换精品无码视频 久久久国产精品酒店 99这里有精品视频 国产精品福利片免费看 亚洲无码手机在线观看 1024中文字幕亚洲二区 免费最新高清中文字幕 熟妇人妻无乱码中文字幕 国产福利在线高清导航大全 亚洲无码视频一区二区 国产亚洲精品精华液 欧美性猛交XXXX乱大交极品 国产亚洲一级二级黄片 国产亚洲精品精华液 无码日韩人妻精品久久蜜 热久久这里是精品6免费观看 国内久久婷婷五月综合欲色广啪 欧美亚洲国产精品一区 国内综合视频一区二区三区 中文国产成人精品久久APP 国产黄视频在线观看 精品无码av人在线观看 国产孕妇av 日本强好片久久久久久AAA 极品教师高清免费观看 蜜臀av免费一区二区三区 国产国产久热这里只有精品 日本a级作爱片金瓶双艳 a级全黄试看30分钟国产 久久这里只有精品66re99 国产91精品老熟女泻火 一区有码中文女同 亚洲va久久久噜噜噜久久4399 国内性爱视频久久久久久 蜜桃视频一区二区三区四区a 伊人色综合久久天天五月婷 亚洲国产成人精品无码区在线观看 国产亚洲欧美日韩精品久久 菠萝菠萝蜜高清观看视频 日韩精品久久自慰喷水流白浆 亚洲高清无码视频网站在线 2020久热爱精品视频在线观看 亚洲色精品?ⅴ一区区三区 色悠悠七天综合视频在线观看 久久久久国产精品美女毛片 日本a级作爱片金瓶双艳 亚洲中文字幕无码久久2020 中文字幕无码a∨高清毛片在线看 人妻少妇中文在线视频 亚洲中文字幕夜夜精品 精品亚洲国产动态图 国产精品综合久久久 精品A片在线观看免费 国产精品综合久久久 中文字幕熟妇久久久人妻 免费能直接在线观看黄的视频 亚洲色婷婷久久久综合日本 亚洲欧美色视频在线观看 欧美一级淫片aaaaaaa视频 亚洲综合中文字幕在线 曰韩少妇内射免费播放 久久久亚洲欧洲日产国产 国产精美欧美一区二区三区 美女高潮无套内谢视频免费 国产黄大片在线视频 a天堂v亚洲无码在线 久久精品国产99国产精2020丨 中文无码乱人伦中文视频在线 国产91精品秘入口福利姬 91亚洲精品高清久久久 在线视频夫妻内射 亚洲欧美日韩综合俺去了伊人 久久久亚洲精华液精华液精华液 久热精品视频全部免费观看 午夜理论电影在线观看亚洲 v永久无码精品天堂久久 精品无码乱码AV片国产在线观看 国产精久久福利网站 亚洲成人在线一区 老少交欧美另类 美女狂揉尿口揉到失禁 亚洲色欲久久久综合网东京热 亚洲精品无码不卡在线观看1 久久精品女人天堂AV一个 97超碰国产一区二区三区 艳妇臀荡乳欲伦交换H在线观看 国产欧美高清在线观看 最新Av不卡免费在线播放 看全色黄大色大片免费久久 国产成人最新毛片基地 成人网站免费观看入口 噼里啪啦电影免费观看高清资源 99这里只有精品视频在线 GAY欧美猛男巨大免费播放 久久久久亚洲AV无码永不 极品教师高清免费观看 国产成人免费v片 国产黄视频在线观看 亚洲日韩欧洲日本国产综合 国产乱理论在线播放 国产欧美日韩一级片 亚洲av天天做在线观看 久久精品女人天堂AV一个 日本一区二区在线观看免费 9AⅤ高清无码免费 999国内精品永久免费视频国产精品永久免费 伊人久久精品无码二区69 亚洲人妻av 亚洲综合精品第一 久久精品这里只有久久 久久96热情精品国产精品 激情综合婷婷丁香五月蜜桃 AV中文无码乱人伦在线观看 亚洲AV无码久久精品一区二区三区 亚洲中文久久无码 成人网站免费观看入口 国产黄色精品在线 亚洲国产日韩欧美在线看片 六月七月丁香缴情欧美 亚洲另类激情综合偷自拍图 日韩精品中文字幕第1页 欧美视频高清一区 波多野结衣在线精品视频 欧美一区二区三区爽 国产高清无码一区二区久久 亚洲第一区欧美国产综合 Av免费不卡国产观看高清 尤物av无码国产在线观看 欧美一级淫片aaaaaaa视频 国产后式视频无码在线观看 艳妇臀荡乳欲伦交换H在线观看 亚洲欧美另类在线观看 日韩中文字幕一区 久久精品色欧美AⅤ一区二区 午夜理论AAA级在线播放 一本精品日韩中文字幕在线 国产有码一区二区三区蜜汁 日本免费一区亚洲国产一 久久www免费人成看片老司机 日韩欧美自拍 国产Va无码精品一区二区三区 高清久久少妇亚洲 亚洲色欲久久久综合网东京热 国产精华液和欧美的精华液的区别 99亚洲国产精品精华液 亚洲av无码不卡一区二区三区 国内久久婷婷五月综合欲色广啪 亚洲AV纯肉动漫无码精品 2021最新国产成人精品免费 99久久无色码中文字幕人妻 国产99视频精品免费视频7 日本精品区视频 国产高清在线观看av片 97se亚洲国产综合自在线不卡 在线电影日韩亚洲中文久 午夜尤物激情福利 国产3p露脸在线视频免费看 国产无码高清一二三四区 九九电影午夜伦里片 А天堂中文最新一区二区三区 日本韩国亚洲综合日韩欧美国产 91亚洲国产AⅤ精品一区二区 久久厕所精品国产精品亚洲 久久久久亚洲AV无码永不 精品无码人妻一区二区三区不卡 日韩无码高清无遮挡啪啪视频 日韩人妻无码精品一专区 欧美日韩人妻精品一区二区三区 毛片视频在线观看网站 新欧美三级经典在线观看 久久中文字幕久久亚洲精品 最新黄色网站字幕网 九九热亚洲精品免费 日本伦奷在线播放 日韩欧美一区二区久久 中文无码久久精品麻豆 色一情一伦一区二区三 又黄无遮挡无码的免费视频 久久精品国产99国产精2020丨 日韩欧美永久中文字幕视频 亚洲国产另类久久久精品网站 久久人人97超碰人人澡国产 欧洲亚洲成av人片天堂网无码 国产精品萌白酱永久在线观看 亚洲AV成人无码久久精品老人 北条麻妃国产九九九精品视频 国产二区视频在线观看不卡 亚洲AV秘无码久久四季 中文字幕无码专区亚洲一区牛影视 天天躁日日躁狠狠躁一区 青青国产一区日本在线 2022年亚洲午夜一区二区福利 久久久免费看黄A级毛片 98最新国产高清在线 亚州一区二区三区中文字幕国产精品 国产一区二区女内射 麻豆极品JK白丝袜自慰喷水久久 亚洲乱码一区二区三区在线欧美 日本一区二区三区免费播放 久久精品色妇熟女丰满 日韩精品国产成人在线 一色屋精品网站免费永久观看 亚洲人成电影网站悠悠久久久 尤物av无码国产在线观看 欧美日韩国产成人精品 亚洲精品国产大片www 永久免费不卡在线观看黄网站 久久99热只有频精品8 国产亚洲中文日本不卡二区 日本午夜精品一区二区三区电影 亚洲综合无码久久精品综合 久久精品国产亚洲av麻豆图片 欧美综合精品久久久 亚洲熟妇久久国内精品 一区二区三区无码免费播放 亚洲美洲欧洲偷拍片区 无码专区高潮AV 久久精品国产72国产精 思思热视频在线观看 18级成人毛片免费观看 高潮和狂野射精合集 99美女精品高潮视频免费 无码白嫩小泬无套在线观看 韩国三级伦理久久影院 91在线无码精品秘入口 羞羞午夜男女爽爽成人影院一 亚洲国产精品一区二区成人片国 欧美亚洲成a人在线观看 亚洲大尺度专区无码浪潮?v 亚洲自偷观看高清久久 国产成人免费久久 中出无码在线人妻 99re8免费视频这里只有精品 日韩久久精品咪爱AV 51精品国产人成在线观看 精品国产片在线免费观看 亚洲狠狠婷婷综合久久久久图片 日韩中文字幕无码R级电影 亚洲AV成人无码久久精品老人 日韩在线观看一区二区不卡视频 了解最新岛国黄片在线播放 91久久国产最好的精华液 a级全黄试看30分钟国产 噜噜色青草久久丁香伊人 在线观看一区二区三区 91久久精品美女高潮喷水白 天堂Aⅴ无码一区二区三区 中日韩中文字幕一二三 91精品国产99久久 久久久久亚洲AV无码专区体验 超碰97国产欧美中文 Xx性欧美肥妇精品久久久久久 久久国产精品国产精品 亚洲午夜理论无码电影在线看 亚洲精品在线观看无码 2020久热爱精品视频在线观看 忘忧草视频在线播放免费观看 91久久国产最好的精华液 精品88久久久精品电影 五月天丁香婷婷精品视频在线观看 久久99日韩国产精品久久99 久久99久久99小草精品免视看 亚洲Aⅴ精品在线播放 a曰本va欧美va视频 激情综合婷婷丁香五月蜜桃 不卡人妻有码中文字幕在线 a天堂在线观看中文字幕网 亚洲永久免费网站 久久久国产精品店 国产美女一级做a爱视频 亚洲线精品久久一区二区三区 蓝光电影在线免费观看 无码人妻精品一区二区在线视 琪琪电影网午夜理论片 超清无码一区二区三区 国产中文字幕在线观看 亚洲av经典在线观看 国产精品视频一区牛牛视频 99亚洲国产精品精华液 亚洲一区二区精品中文字幕 欧美成人区一区二区在线 国产高清无码一区二区久久 国产成人精品久久二区二区 亚洲综合图区天堂在线 精品国产片在线免费观看 亚洲日韩欧洲日本国产综合 激情影院内射美女 毛片视频在线观看网站 国产综合无码一区二区辣椒 中文字幕欧美精品视频在线 日产国产精品精品a∨ 亚洲中文字幕在线天天更新 2021最新国产成人精品免费 高清国产一级毛片国语 国产经典绝伦的爱情电影 国产日产欧产精品精品推荐免费 亚洲国产精品第三页 久久不见久久见免费影院www 亚洲?V无码乱码在线观看裸奔 亚洲一区二区三区国产精品 国产日韩欧美顶级片 欧美尺寸又黑又粗又长 亚洲综合图区天堂在线 日韩精品无码不卡无码 亚洲A∨一区二区三区18 日韩欧美高清在线观看 黄色网站网址在线观看 亚洲Aⅴ精品在线播放 日本强伦姧人妻一区二区 北条麻妃国产九九九精品视频 久久精品国产精品亚洲蜜月 日韩欧美自拍 日本精品一区 新欧美三级经典在线观看 伊人色综合网久久天天 久久综合国产精品悠悠 一级免费黄片插插插 欧美成人区一区二区在线 国产高清美女一级a毛片久久 日韩精品电影在线观看 无敌神马琪琪观看影院在线 国产综合A级片视频 国产精品VIDEOSSEX久久发布 日韩精品人妻无码一区无码毛片 插插射啊爱视频日A级 欧美影片一区二区三区 国产日韩欧美顶级片 日本乱子伦一区二区三区 亚洲成?V人片在线观看无码不卡 麻豆国产av巨作国产剧情 久久久亚洲精品成人影院 久久99精品一级毛片 美国一级黄色大片 国产精品观看免费 中文字幕在线观看精品 国产亚洲精品精华液 91精品国产91久久久久久最新 国产孕妇av 亚洲最新无码精品视频2021 亚洲av综合avav中文 а∨天堂在线一本大道 日日av拍夜夜添久久免费 精品国产三级A∨在线观看欧美 亚洲人成网亚洲欧洲无码久久 女人爽到高潮免费看视频 日韩免费一本视频在线观看 国产亚洲欧美日韩在线观看一区 亚欧一级黄色片美中文字幕在线观看 亚洲国产尤物a∨日韩在线 思思久久精品免费视频 日韩亚洲欧美国产精品 国内精自线一二三四2021 欧美在线视频免费观看 国产成人免费高清Av多毛熟女 国产精品免费视频一区二区 无码一区二区波多野结衣播放搜索 国产成本人片无码麻豆免费 国产精品TV在线麻豆 阿v视频观看免费国产最新 亚洲成a人片在线观看中文app 无码成a∧人片在线播放 久久人人爽人人人人av 国产Av仑乱内谢 亚洲AV中文无码乱人伦在线视色 国产一级毛片一区二区三区 国产91精品老熟女泻火 2023在线观看精品一区 亚洲一区国产精品 国产三级Av在在线看 人人澡人人草 日本a级作爱片金瓶双艳 欧美一区二区在线观看视频 二区在线播放 野狼av午夜福利在线观看 精品乱码一卡2卡3卡 欧亚av无码vr电影 亚洲日韩一区二区 国产在线第一页 国产又粗又掹又爽又黄的aa 亚洲精品视频免费观看 亚洲AV纯肉动漫无码精品 夜夜爽妓女8888视频免费观看 欧美成人一区二区三区蜜臀 精品欧美成人高清在线观看 亚洲中文字幕无码久久2020 在线aⅴ免费 四虎影视88aa四虎在钱 精品中文字幕无码 国产高清不卡一区二区 无码人妻久久一区二区三区蜜桃 色综合天天综合网国产国产人 欧美成年黄网站色高清视频 国产美女精品视频线播放 国产精品国产亚洲看不卡 国产精品亚洲一区二区三区在线观看 国产日产欧产精品精品推荐免费 国产高清国产精品国产专区 2021最新国产精品一区 亚洲AV无码1区2区久久 亚洲熟妇无码八?V在线播放 亚洲一卡2卡三卡4卡国色天香 天堂在线视频精品 麻豆极品JK白丝袜自慰喷水久久 自拍国语日韩欧美视频在线观看免费 韩国漂亮人妻被中出中文字幕 欧美激情高潮老外A一级 公侵犯人妻中文字慕一区二区 精品国产三级A∨在线观看欧美 国产又粗又猛又黄视频 久久成人网站亚洲综合 6080三级在线观看视频 免一级毛片片在线观看 亚洲AV成人影视综合网 蜜乳AV一区二区三区 久久99久久99小草精品免视看 久久国产欧美日韩精品图片 无码成人午夜福利久久 快插我BB好爽舔我视频 欧美亚洲日韩中文 国产一级级内射视频 精品亚州毛片在线免费观看 91亚洲国产AⅤ精品一区二区 免费A级毛片在线播放不收费 日韩中文字幕精品三区在线 亚洲日韩精品无码网址 色欲AV无码国产精品麻豆 亚洲狠狠婷婷综合久久久久图片 亚洲高清无码播放 国内久久婷婷五月综合欲色广啪 天堂中文在线资源 国产大片黄在线播放 日本色网色网视频三级片 国产福利一区二视频播放24p 国产AV无码一级毛片 在线观看片免费视频无码 欧美一区二区三区电影 高清国产一级毛片国语 久久午夜视频一二三区 视频91免费在线观看 日韩AV无码社区一区二区三区 最近免费中文字幕大全高清 亚洲欧美中文日韩在线 密云县| 藁城市| 新源县| 嘉兴市| 肇庆市| 儋州市| 吉水县| 鹤峰县| 杂多县| 巢湖市| 启东市| 奈曼旗| 海晏县| 兴文县| 美姑县| 远安县| 澜沧| 文登市| 大冶市| 都昌县| 丽江市| 孟村| 洛阳市| 文昌市| 浦县| 瑞丽市| 平湖市| 河曲县| 蒲城县| 沈丘县| 铁岭市| 洪洞县| 武穴市| 禹州市| 平安县| 都安| 塔河县| 奉新县| 招远市| 河北省| 永安市|